Erythrocyte Efferocytosis by the Arterial Wall Promotes Oxidation in Early-Stage Atheroma in Humans
نویسندگان
چکیده
BACKGROUND Since red blood cells (RBCs) are the predominant cellular blood component interacting with the arterial wall, we explored the role of RBCs efferocytosis by vascular smooth muscle cells (vSMCs) in the initiation of human atheroma. METHODS AND RESULTS The comparison of human healthy aortas with aortic fatty streaks or fibroatheromas revealed that RBC angiophagy is implicated from the earliest stages of atherogenesis, as documented by the concomitant detection of redox-active iron, hemoglobin, glycophorin A, and ceroids. RBCs infiltration in the arterial wall was associated with local lipid and protein oxidation, as well as vascular response (expression of heme oxygenase-1 and of genes related to iron metabolism as well as those encoding for phagocytosis). These effects were recapitulated in vitro when vSMCs were co-cultured with phosphatidyl-exposing senescent (s) RBCs but not with fresh RBCs. VSMCs engulfing sRBC increased their intracellular iron content, accumulated hemoglobin, lipids, and activated their phagolysosomes. Strikingly, injections of sRBCs into rats promoted iron accumulation in the aortic wall. In rabbits, hypercholesterolemia increased circulating senescent RBCs and induced the subendothelial accumulation of iron-rich phagocytic foam cells. RBCs bring cholesterol and iron/heme into the vascular wall and interact with vSMCs that phagocytize them. CONCLUSION This study presents a previously unforeseen mechanism of plaque formation that implicates intimal RBC infiltration as one of the initial triggers for foam cell formation and intimal oxidation. Pathogenic effects exerted by several metabolic and hemodynamic factors may rely on their effect on RBC biology, thereby impacting how RBCs interact with the vascular wall.
منابع مشابه
Metalloproteinases, Mechanical Factors and Vascular Remodeling
Chronic increases in arterial blood flow elicit an adaptive response of the arterial wall, leading to vessel enlargement and reduction in wall shear stress to physiological baseline value. Release of nitric oxide from endothelial cells exposed to excessive shear is a fundamental step in the remodeling process, and potentially triggers a cascade of events, including growth factor induction and m...
متن کاملPresentation of a Non-invasive Method of Estimating Arterial Stiffness by Modeling Blood Flow and Arterial Wall Based on the Determination of Elastic Module of Arterial Wall
Introduction: Arterial stiffness is an important predictor of cardiovascular risk. Several indices have been introduced to estimate the arterial stiffness based on the changes in the brachial blood pressure. Since the substitution of the blood pressure changes in the central arteries such as carotid with the blood pressure changes in the brachial results in error in the blood...
متن کاملUptake of Plasmin-PN-1 Complexes in Early Human Atheroma
Zymogens are delivered to the arterial wall by radial transmural convection. Plasminogen can be activated within the arterial wall to produce plasmin, which is involved in evolution of the atherosclerotic plaque. Vascular smooth muscle cells (vSMCs) protect the vessels from proteolytic injury due to atherosclerosis development by highly expressing endocytic LDL receptor-related protein-1 (LRP-1...
متن کاملExpression of tumor necrosis factor receptor-1 in arterial wall cells promotes atherosclerosis.
OBJECTIVE Mechanisms by which tumor necrosis factor-alpha (TNF) contributes to atherosclerosis remain largely obscure. We therefore sought to determine the role of the arterial wall TNF receptor-1 (TNFR1) in atherogenesis. METHODS AND RESULTS Carotid artery-to-carotid artery interposition grafting was performed with tnfr1-/- and congenic (C57Bl/6) wild-type (WT) mice as graft donors, and cong...
متن کاملImpact of Blood Vessel Wall Flexibility on the Temperature and Concentration Dispersion
The analysis of solute and thermal dispersion in pulsatile flow through the stenotic tapered blood vessel is presented. The present problem is an extension of the work done by Ramana et al. who considered the time-invariant arterial wall. In the present model, the flexible nature of the arterial wall through the obstruction (called stenosis) is considered and it is achieved with the he...
متن کامل